Posts Tagged ‘Polistes’

Er, uh . . . I meant totalitarian

May 12th, 2010

A good friend recently pointed out his surprise at my use of the word communist in this post, given my political leanings. He’s right; that wasn’t the right word. What I meant was totalitarian.  I do think that the cells in our body are locked in a kind of communism, but the negative aspect I was pointing out isn’t necessarily linked to that.  Obviously, communism has lead to totalitarianism often, but I hope it’s clear from my blogs that hyper-individuality in the midst of society has its serious costs as well. We’ve seen the cost of extreme individuality in the stock market (no surprise, from a historical perspective; it’s all right there in Marx), and we see its costs in cancer.

The experiment of America, of Federalism, is partly about grappling with these seemingly incongruous interests. The Founders tried to find a solution, and the Transcendentalists tried to find a solution. But so did the Bolsheviks. And so does Polistes, and so does Dictyostelium, and so do all living things.  For social creatures, negotiating the individual and the group is an everlasting struggle of life.

This conflict plays out in our bodies as well, at times.  That was the only message I intended.

Tags: , , , , , , , ,
Posted in biology, social contract | Comments (1)

Rapping about evolution, sociality, cheaters and slugs

May 8th, 2010

An interesting article appeared in the NY Times a couple of days ago. I have my doubts about the general appeal of a rap performance about evolutionary biology, but maybe it’s great. Who knows? You can investigate Baba Brinkman’s “The Rap Guide to Evolution” for yourself here and here.

Of particular interest, the article highlights one part of the show:

Dictyostelium is notorious, in some circles, for its strange life-style. Usually, an individual Dictyostelium lives alone as a single cell. But when food is scarce, the single cells come together and form a being known as “the slug”; this crawls off in search of better conditions. When it finds them, the slug develops into a stalked fruiting body, and releases spores. But here’s the mystery: not all members of the slug get to make spores — and thereby contribute to the next generation — so why do they cooperate?

Dictyostelium is an incredibly interesting group of organisms. A genus of usually solitary, single-celled amoebae, members of the group are also facultatively social. Individual Dictyostelium cells spend most of their life on the forest floor, eating bacteria. When bacteria become scarce, and the amoeba cells start to starve, they release chemical pulses that draw individual cells together. Once together, the cells form a mound of cells, all piled on top of each other. And then something amazing happens, the mound starts to crawl (yes, crawl) as one unit, across the forest floor. This slug is now, by any reasonable definition, a multicellular individual.

A beautiful image of a Dictyostelium discoideum slugs (bottom) and stalks with spore masses on top. Photo credit: Owen Gilbert

But that’s not the end of this startling story. After crawling away a bit (and by the bye, these slugs are visible and you can watch them crawl), cells at the leading edge organize themselves into a stalk, a pillar, via which the lagging cells in the slug will eventually ascend. The stalk cells die, and the other cells crawl up the stalk and become a mass of sporulating cells, leaving clonal offspring that might disperse from the impoverished environment more easily because of the (slight) height. (Well, in fact, this particular sequence is not universal. Some species of Dictyostelium do it differently, but the ultimate product, the formation of a slug and stalked spore body, is the same).

The comparison to wasp workers and queens is clear enough, but the comparison to our bodies is even clearer. Dictyostelium is a group with sterile worker cells and reproductive cells, and the group is composed of genetically identical cells ( . . . well, sometimes). We are a group of cells with sterile workers cells (our soma, all of our tissues and body parts) and reproductive cells (our germ, egg and sperm). The only difference (and it’s a big one, admittedly) is that our worker cell caste has differentiated into many subcastes—different sterile cell types and tissues composed of sterile cells—just like the workers of highly social wasps.

So Dictyostelium is sort of like Polistes: it has cycles of solitary and social, and it bridges the gap between completely selfish and altruist. (In fact, some of the most important work on Dictyostelium comes from the lab of two former(-ish) social wasp researchers). Given this, the next time someone tells you there are no transitionary intermediates that reveal major shifts in evolution, you can point them to Dictyostelium.

So the question: Why do Dictyostelium cells seemingly willingly, suicidally sacrifice themselves, forgo reproduction, and form the structure (the tissue) that is the stalk? The same question applies to worker wasps, and the cells in your finger. The beginings of the answer were provided by Darwin, but the mathematical framework wasn’t worked out for just over a century later, by über-famous social wasp researcher Bill Hamilton. Hamilton’s insight was as simple as it was brilliant.

It goes like this. Imagine an individual I will call the actor. The actor has two reproductive choices: She can reproduce directly by having her own offspring (thus leaving her genes and heritable tendencies, including her tendency to reproduce directly), or she can reproduce indirectly by assisting relatives have enough additional offspring such that they compensate for our actor’s sacrifice in direct reproduction. This works because relatives share genes. So, for example, our actor (let’s assume she’s a human now) could have one child, or help a sister have two additional children (over the children her sister would normally have absent our actor’s help). Because our actor and her sister share genes by descent, in each case, the same amount of genes are left by the our actor. If the actor has one child, she leaves half of her genes to the next generation. If the actor helps her sister have two additional offspring—because she’s related to her full sister by half, and thus related to her nieces and nephews by one quarter—then our actor leaves two times one quarter of her genes, or half, the same as if our actor had one child directly.

Some individuals in populations will have heritable tendencies for direct reproduction (the selfish tendency). Others (due to natural variation) will have heritable tendencies for indirect reproduction (essentially, helping, or being a worker, an altruist). Whichever individuals actually reproduce more, leaving more copies of their genes—including their heritable tendencies for either selfish direct reproduction or altruist indirect reproduction . . . whichever tendency happens to leave the most genes to the next generation will become more common, generation after generation. The other tendency will wane. Either tendency could be more successful, and this can change depending on other external, environmental factors. But whatever the context, if being a sterile helper results in more genes’ being shuttled into the next generation, that tendency will evolve. And the same goes for the tendency for direct reproduction. Neither tendency is universally better. Natural selection decides.

In Dictyostelium, this calculus is simplified, because the cells are (often) all clones of one another, so if one cell reproduces directly or by helping a clone reproduce, the reproductive success to each cell is the same. In this context, conflict-free cooperation can much more easily evolve. Of course, I’ve already pointed out in previous blogs that mutation can strike, and change the behavior of a cell, just like in our bodies. When this happens, the happy harmony is disrupted, and the cheater cell might corrupt the system by reproducing wildly, or otherwise refusing to engage the social contract. This happens in Dictyostelium, just as it does in us. All social systems have cheaters, cancer.

The harmony of Dictyostelium can also be disrupted when slugs are composed of genetically different cells, or even (sometimes) different species. When this happens, cells don’t easily sacrifice themselves and become stalk tissue. It’s easy to see why that behavior might not be favored by natural selection. In this context, becoming a sterile worker might mean very little or no indirect reproduction (for example, if the spores are all distant relatives of the stalk cell). If sterility and helping leave no genes indirectly, the behavior washes away over generations. The only tendencies that are left are the selfish: In a mixed group, fight for direct reproduction or perish. So, this generates great conflict, and individual cells in the slug try to position themselves such that they will be in the spore mass.

Because of this kind of conflict, it was long ago predicted that members of social groups should be able to recognize close relatives. Since that prediction—a prediction that derives directly from the mathematical evolutionary framework I describe above—many social creatures have been shown to recognize kin. You might think this kind of conflict (from genetically distinct cells) has little bearing on humans, but it’s exactly the kind of conflict that stem cell transplants can generate. The potential for that conflict is playing itself out in me now. My new cells have kin recognition abilities, and if they aren’t tricked into thinking my body is kin, a significant conflict may erupt.

So now, I’m like a mixed colony of Dictyostelium. Having hopefully exterminated the mutant cheater cancer cells, I now face yet another other social conflict. As time passes, the probability of that conflict rises.

Tags: , , , , , , , ,
Posted in biology, social contract | Comments (4)

Conflict between the individual and the group

May 5th, 2010

Okay, I know.  I didn’t actually blog again last night.  Sorry for that, but since I’ve been feeling so, so, so much better, I’ve begun to realize just how much work I was laying aside.  I’ve been catching up.

So as a mini-catchup,  I’ll offer this symbol and some thoughts:

Polistes in Thoreau's attic

Polistes in Thoreau's attic

This is a nest of the genus Polistes—from the attic of the home where Henry David Thoreau was born. (Really.  You’ll just have to trust me on this, okay?)  Greg and I visited Walden Pond and toured Concord with expert historian Joseph Wheeler (grandfather of a good friend of ours, and son of the historian Ruth R. Wheeler, author of Concord: Climate for Freedom) just before I was admitted for my stem cell transplant, over seven weeks ago.

My greatest intellectual influences, without a doubt, come from the 1800s.  Marx, Engels, Darwin, Kropotkin, Emerson, Whitman, and of course Thoreau.   Like millions of other American High School students, I was especially influenced by the Transcendentalists.  But unlike some of my other 19th Century influences, the Transcendentalists—and especially Thoreau, I think—were caught in a kind of struggle.  They all wanted to forge a better world, and they all believed in cooperative alliances and effort; many joined communes and similar groups.  But the Transcendentalists were also great advocates of the individual, and the individual spirit.  This is especially true of Thoreau, who famously retreated from society, lived alone for a few years, and even went to jail in solitary protest against slavery.  At the same time, his writings and his message influenced Gandhi and MLK to reshape society through coordinated group action.  Thoreau is like Polistes.

Polistes is a one of the varieties of wasp I discussed in an earlier post, the kind in which groups of females, all able to have offspring, initially fight to become the egg layer and queen of the colony. There is little-to-no physical evidence of division of labor—no obvious anatomical queen and worker castes.  Eventually, the losers in combat settle down, sort of, and become workers.  But the social group is composed of would-be individualists, biding their time for an opportunity to shrug off their worker roll and take the queen’s throne.  It is a group that exhibits cycles of social behavior interrupted by periods of solitary behavior.  Polistes are the Transcendentalists of the wasp world, symbolically bridging the gap between selfish and altruist, individual and group.

This is how I see Thoreau. For humans as individuals, this might be a good, stable state.  For wasps, it’s unclear to me.  For the colony of cells in our bodies, such conflict is decidedly unwelcome—and when it happens, we call it cancer.

But are our individual cells slave to some purely communist totalitarian society?  Why wouldn’t they “prefer” individuality, a notion so decidedly American?  Does our body’s proper functioning demand that our worker cells (that form our kidney’s, lungs, livers, and, of course, blood) be oppressively chained to a social contract that forces them into a single roll (despite having all the genes needed to perform any roll), never allows them to reproduce freely (many are unable to divide after a point, and all are restricted), and then ultimately commit suicide (apoptosis) when the group so decides? What a dystopian nightmare!

So, as strange as it may sound, from a perspective of freedom, and rejoicing in the individual at all levels—ideas that ignited my intellect and set me on a path to activism and my current study so many years ago—I have sympathy for my cancer.  I cannot blame those cells for wanting to be free.

UPDATE:  See this post.

Tags: , , , , , ,
Posted in biology, social contract | Comments (5)